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1. General Information 

Background 

Hydrogen sulfide (H2S; CAS No. 7783-06-4) is a 

colorless, flammable gas with a characteristic 

odor of rotten eggs. It is produced naturally and 

as a result of human activity. Natural sources 

account for about 90% of the total H2S in the 

atmosphere (56). Concentrations of H2S in 

ambient air as a result of natural sources have 

been estimated to be between 0.14 and 0.4 

µg/m3 (56). The odor threshold of H2S is 0.011 

mg/m3. Human exposure at ranges between 5 

and 700 mg/m3 have reported to result in ocular, 

respiratory and neurological complications. At 

concentrations > 700mg/m3, incidences of death 

have been reported (5). 

Endogenous H2S synthesis and 

metabolism 

Apart from environmental and bacterial sources, 

mammals too are capable of synthesizing H2S. 

Endogenous levels of H2S have been measured 

in the circulatory system with rat serum being 

reported to contain ~46uM H2S (67). H2S 

synthesizing activity has also been shown in rat 

tissue extracts of liver, kidney, heart, brain, small 

intestine, skeletal muscle and pancreas (22). H2S 

can be hydrolyzed to hydrosulfide and sulfide 

ions. In an aqueous solution, about one third of 

H2S remains undissociated at pH 7.4. H2S is 

permeable to plasma membranes as its solubility 

in lipophilic solvents is ~ fivefold greater than in 

water (53). 

Endogenous H2S can be synthesized via the 

desulfuration of cystine/cysteine by three 

enzymes; Cystathionine beta synthase (CBS; EC 

4.2.1.22), Cystathionine gamma Lyase (CSE; EC 

4.4.1.1) and mercaptopyruvate sulfurtransferase 

(MST; EC 2.8.1.2) MST is found both in the 

mitochondria and cytosol while CBS and CSE are 

mainly produced in the cytosol. (22). Among the 3 

enzymes, MST contributes the least towards 

endogenous H2S production (36, 42) while CBS 

seems to be the main H2S-forming enzyme in the 

CNS and CSE is the main H2S-forming enzyme in 

the cardiovascular system (34). In mice, CSE 

expression has been detected mainly in the liver 

and kidney, and in lower abundance in adipose 

tissue, stomach, small intestine, brain, heart and 

lung (20). CBS expression has been found in all 
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parts of the brain, liver and pancreas (4, 38). In 

mouse pancreas, CBS is ubiquitously distributed but 

CSE was found mostly in the exocrine and in very 

small amounts in the freshly prepared islets. 

However, high glucose increased the CSE 

expression in the beta-cells (23). 

Both CSE and CBS are pyridoxal 5’-phosphate 

dependant enzymes. CBS is able to synthesize H2S 

directly by substituting the thiol group L-cysteine 

with a variety of thiol compounds to form H2S and 

the corresponding thioether. CSE on the other hand 

catalyzes the desulfhydration of cystine which 

results in pyruvate, NH4
+, and thiocysteine. 

Thiocysteine then reacts with cysteine or other thiols 

to form H2S (42) (Figure 1) The metabolism of H2S 

can be divided to 3 distinct pathways: oxidation to 

sulfate, methylation, and reaction with metallo or 

disulfide containing proteins (5). Oxidation of sulfide 

to sulfate and subsequent excretion by the kidney is 

thought to represent the major metabolic and 

secretory pathway.  

Physiological and pathological functions: 

Rapid development in the H2S field has revealed 

numerous possible physiological and pathological 

roles for H2S. Below is a brief introduction into the 

current areas in H2S have been discovered to play a 

role. 

Neuromodulation 

Physiological concentrations of H2S selectively 

enhance NMDA receptor-mediated responses and 

facilitate the induction of hippocampal long term 

potentiation (1) as well as regulate the release of the 

corticotrophin-releasing hormone from the 

hypothalamus (14). An antinociceptive role of H2S 

has been reported in colorectal distensions in rats 

mediated by KATP channels and NO (15). 

Subsequent studies have however, reported a 

pronociceptive role for H2S through the 

sensitization/ activation of T-type Ca2+ channels (31, 

16). 

 

Figure 1. Endogenous H2S synthesis and metabolism. 
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Cardiovascular function 

H2S has been demonstrated to be a vasoactive 

factor that relaxes rat thoracic aorta and portal 

vein, and guinea pig ileum in a concentration 

dependent manner (18). This action has been 

shown to be mediated by activation of KATP 

channels resulting in a hyperpolarized membrane 

leading to smooth muscle relaxation (67). A 

growing body of evidence suggests that H2S 

preconditioning protects against myocardial injury 

(9, 21, 40, 41) 

Interaction with reactive- oxygen and nitrogen 

species 

H2S has been shown to possess scavenging 

properties towards peroxynitrite (54) and 

hypochlorous acid  (27, 55). An indirect anti-

oxidant effect was observed in primary neuron 

cultures where H2S was found to increase 

glutathione levels by enhancing the activity of 

gamma-glutamylcysteine synthetase and up-

regulating cystine transport (26). H2S has also 

been shown to interact with reactive oxygen 

species from activated neutrophils resulting in its 

oxidation to sulfite which is toxic at high levels 

(32). 

Inflammation 

The role of H2S in inflammation is still a matter of 

debate. In most of the studies, H2S has been 

shown to be pro-inflammatory. This was observed 

in various animal models of inflammation such as 

LPS induced endotoxemia (28), pancreatitis (8), 

cecal-ligation and puncture induced sepsis (65), 

hemorrhagic shock (33), burns injury (66) and 

cisplatin induced renal injury (13). In these 

studies, pre-treatment with inhibitor of 

endogenous H2S synthesis, PAG afforded 

protection while administration of H2S in the form 

of NaHS resulted in exacerbation. 

On the other hand, studies have reported an anti-

inflammatory effect on gastritis and colitis using 

Lawesson reagent as a sulfide donor as well as 

NaHS at a low dose (51, 52). A slow releasing 

H2S molecule, GYY4137 has also been shown to 

protect mice against LPS induced endotoxemia 

(30) by the same author that previously showed 

pro-inflammatory effect using NaHS (28). H2S 

releasing drugs have also been shown to have 

anti-inflammatory effect attributed to the sulfide 

moiety and not the parent drug, diclofenac (6, 29). 

Conflicting observations have also been reported 

on the effect of H2S on leukocyte rolling and 

adhesion. Studies have shown that H2S both 

positively and negatively regulate leukocyte 

activation and migration. (3, 12, 64, 65, 68). It is 

becoming apparent that H2S has a multifaceted 

role in inflammation and current studies vary in 

opinions largely based on the dose, rate of 

release, and type of H2S donor used. 

2. Pancreatic Information 

1. H2S and Insulin secretion 

Mobilization and secretion of insulin-containing 

vesicles into the extracellular space is regulated 

by cellular Ca movements via the regulation of the 

voltage gated Ca channel which is activated 

based on membrane polarization. H2S which is 

actively synthesized in the pancreas has been 

shown to activate KATP channels in smooth muscle 

cells which regulate membrane polarization. 

Therefore it has become of interest to study the 

possible role of H2S in insulin mobilization.  

Freshly prepared pancreatic islet and related cell 

lines are reported to express H2S synthesizing 

enzymes, CSE and CBS (24, 60, 63). H2S 

synthesizing rates were reported in INS-1E cells 

at 12 nmole/g/min in 5mM glucose (60) and fresh 

rat pancreas extract at 38 nmole/g/30min (63) and 

8 nmole/g/min (57). Increased glucose 

concentration (20mM) in INS-1E cells resulted in 

a decrease in H2S synthesis to 6 nmole/g/min 

(60). Altered H2S synthesis was also observed in 

fresh pancreatic extracts of Streptozotocin-

diabetic and Zucker diabetic fatty rats which 

increased to 65 nmole/g/30min (63) and 12 

nmole/g/min (57) respectively. However the 
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identified enzyme that was responsible for this 

observed increase in H2S synthesis differed 

between these two models of diabetes. In the 

Streptozocin-diabetic rats, the increased H2S 

synthesis was attributed due to an increased CBS 

expression of up to 2-fold (63), while in Zucker 

diabetic fatty rats it was due to increased CSE 

expression (57).  

These changes in H2S levels affect the amount of 

insulin secreted, the general consensus being 

H2S functions as an inhibitor to insulin secretion. It 

has been reported that exposure of beta islet cells 

to exogenous or increased endogenous H2S 

significantly reduced glucose-induced insulin 

secretion (2, 24, 57, 63) The observed 

suppression of insulin secretion by H2S has been 

associated with the opening of KATP channels. The 

reported effective dose of NaHS (exogenous 

source of H2S) that resulted in activation of KATP 

channels and reduced insulin secretion in INS-1E 

and HIT-T15 cells was 100uM (60, 2). This was 

abolished following pre-treatment with a KATP 

channel blocker, glibenclamide (2). Similar 

findings were reported in freshly prepared islet 

cells from rats (57). Further molecular mechanism 

studies revealed that exogenous H2S prevents Ca 

influx (2) and oscillation (24) which are essential 

to insulin secretion (37) 

2. H2S and pancreatic cell death 

H2S has been reported to induce apoptosis in 

both exocrine and endocrine cells of the 

pancreas. Pancreatic acinar cells treated with 10 

uM NaHS for 3 hours showed positive Annexin V 

staining (10). This was accompanied with the 

activation of effector caspase -3 and initiator 

caspase- 8 and 9 as well as loss of mitochondrial 

membrane integrity and release of cytochrome C. 

Additionally pro-apoptotic proteins Bax was 

upregulated while anti-apoptotic protein FLIP was 

downregulated. INS-1E cells stimulated with 100 

uM H2S (pure H2S gas) and CSE over-expressing 

INS-1E cells were found to be apoptotic at 12 

hours and 48 hours respectively (59). The authors 

reported an inhibition of ERK 1/2 and activation of 

p38 MAPK as well as upregulation of ER stress 

regulators; BiP and CHOP following H2S 

stimulation. Inhibition of p38 MAPK inhibited 

expression of BiP and CHOP leading to a 

decrease in H2S mediated apoptosis in INS-1E 

cells. 

Interestingly, H2S has also been shown to have 

anti-apoptotic effect on pancreatic endocrine cells. 

100 uM NaHS and 3 mM L-Cysteine suppressed 

freshly prepared mouse islet cell apoptosis 

induced with high glucose (20 mM) for 18 hours 

(23). H2S has also been shown to protect freshly 

prepared mouse islet cells against apoptosis 

induced by palmitate, H2O2 and cytokine mixture 

(TNF-α, IL-1β and INF-δ) but did not protect 

against thapsigarin and tunicamycin (49). Similar 

findings were found with MIN6 cells (23). 

Administration of NaHS was found to reduce 

oxidative stress by increasing glutathione content 

(23) and suppression of ROS production (49) in 

MIN6 cells following insult. 

3. H2S modulates pancreatic nociception 

NaHS was shown to be pronociceptive when 

administered into the pancreatic duct of rats at 

500 nmole /rat (35, 16). Nociception was 

determined by expression of Fos proteins as well 

as phosphorylation of ERK in the spinal dorsal 

horns of the animals. The upregulation of Fos and 

phosphorylation of ERK was abolished following 

pre-treatment with Mibefadril, a T-type Ca2+ 

channel blocker. In the caerulein induced 

pancreatitis model, the prevention of pancreatitis 

associated allodynia/hyperalgesia has been 

reported by pre-treatment with a CSE blocker 

(PAG) and treatment with a T-type Ca2+ channel 

blocker (Mibefadril) (35). 

4. H2S regulates the severity of inflammatory 

response in acute pancreatitis and associated 

lung injury 

Caerulein induced acute pancreatitis upregulates 

CSE expression and H2S production whereas 
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inhibition of endogenous H2S formation with DL-

propargylglycine (PAG), a CSE inhibitor, reduces 

the severity of caerulein-induced acute 

pancreatitis and affords protection against the 

associated lung injury in mice (8). H2S donor, 

NaHS provoked inflammation in both mouse 

pancreatic acinar cells (46) and primary human 

monocyte cells (68). Therefore, observations 

using H2S donor in murine cells could still be 

extrapolated to human cells, and may provide 

useful guidance on the potential therapeutic 

benefits of using H2S in inflammatory conditions.  

Studies have suggested that H2S has both pro 

and anti-inflammatory properties, depending 

largely on the experimental conditions and the cell 

type under scrutiny. The mechanism through 

which H2S is able to promote and delay 

inflammatory response still remains to be fully 

elucidated. However, it has been proposed that 

low concentrations (NaHS- 5 and 10 µM) (48) of 

H2S, have a protective effect. On the other hand 

higher concentrations (100 µM) (46) induce 

inflammation in the acini. Another H2S donor 

ACS15, is a H2S releasing derivative of 

Diclofenac. ACS15 reduced lung inflammation 

without having any effect on pancreatic injury (6). 

In addition Nishimura et al showed that pancreatic 

NaHS/ H2S most probably targets T-type Ca(2+) 

channels, leading to nociception, and that 

endogenous H2S produced by CSE and possibly 

T-type Ca(2+) channels are involved in 

pancreatitis-related pain (35). 

Altering endogenous or exogenous H2S may have 

unanticipated effects because H2S has a wide 

array of actions for example H2S regulates 

chemokines, cytokines and adhesion molecule 

expression and exerts explicit biphasic effect in 

acute pancreatitis and associated lung injury (Fig 

2) (39, 45). At present, there are several 

pathways that appear to be involved in the 

potential effects of H2S on acute pancreatitis. 

Although the mechanism of the pro-inflammatory 

effect of H2S has not yet been fully investigated, it 

is likely that H2S stimulates neutrophil adhesion to 

caerulein treated pancreatic acinar cells and 

subsequent intracellular adhesion molecule 

(ICAM)-1 upregulation through Src family kinases 

(44). 

One of the major messengers in the upregulation 

of ICAM-1, and neutrophil adhesion, is nuclear 

transcription factor- B (NF- B). NF- B is a 

transcription factor that translocates to the cell 

nucleus on activation by H2S, whereupon it acts 

as a signal for increased transcription of ICAM-1. 

This increase in ICAM-1 mRNA was consistent 

with Western blot analysis of increased NF- B in 

caerulein treated pancreatic acinar cells. The 

mechanism of this enhanced ICAM-1 mRNA 

appears to relate to I B-α, since H2S donor 

inhibits I B-α phosphorylation. I B-α is the 

inhibitory subunit of NF- B and thus inhibition of 

I B-α activates the expression of NF- B, 

effectively upregulating ICAM-1 expression on 

pancreatic acinar cells. In caerulein treated 

pancreatic acini, PAG reduces ICAM-1 expression 

which led to decrease in neutrophil adhesion to 

acini via Src family kinases and NF- B (44). 

Another potential mechanism of action of H2S is 

its interaction with the neuropeptide Substance P 

in both an in vivo (7) and an in vitro model of 

acute pancreatitis (46). As a consequence of this 

interaction Substance P is upregulated via 

activation of TLR4 and NF- B pathway (7). 

Blockade of H2S biosynthesis by PAG and PPTA 

deficiency attenuates H2S induced TLR4 and NF-

B pathway possibly by stimulation of I B-α 

phosphorylation (Fig 2) (47). 

Recently, we analyzed the mechanism by which 

H2S reduces caerulein induced inflammation in 

pancreatic acini. We found that H2S activation of 

the PI3K/AKT pathway negatively regulates the 

intracellular signaling pathway, ERK, transcription 

factor NF- B and the cytokines in caerulein 

treated pancreatic acinar cells (Fig 2) (48). 

Activation of PI3K/AKT signaling mediates the 

anti-inflammatory effects in inflammation (62). 
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Differences may exist in the mechanisms by 

which H2S induces inflammation. It is also 

important to realize that the concentration of H2S 

donor used may not necessarily reflect the 

concentration of H2S to which the cells are 

exposed. Equivalent concentrations of different 

H2S donors may liberate H2S to different extents 

or at different rates. Therefore, the concentration 

of free H2S in the vicinity of the cells at any given 

time may vary, and the H2S concentration in the 

system needs to be measured in order to directly 

compare different H2S donors. The vast majority 

of work on this subject has been carried out using 

in vitro and in vivo systems, utilizing animals. How 

the results obtained in these systems relate to the 

in vivo situation during inflammation in humans 

still largely remains to be determined, but recent 

studies in mice show that H2S is a promising 

candidate for treatment or prevention of 

inflammatory conditions. Further studies are 

required to elucidate completely the mechanism 

of action of H2S on inflammation, in order to 

identify potential targets for the treatment of 

human inflammatory conditions and to evaluate 

the sources of H2S that provide greatest 

therapeutic potential. 

Summary 

H2S is produced by three enzymes, CSE, CBS 

and MST which are present in most mammals 

including humans. Both CBS and CSE are 

expressed in the pancreas. H2S has been found 

to have both physiological and pathological roles 

in the pancreas. Currently there have been 

multiple conflicting reports on the effect of H2S 

which could be largely attributed to the source 

and dose of H2S studied. 

 

 

Figure 2. Based on our findings, this overview shows that H2S (5µM) induced (PI3K/AKT) anti-

inflammatory signals down-regulate proinflammatory gene induction by abrogating caerulein-induced 

IkBα degradation and thus NF-kB nuclear translocation. On the contrary, H2S at 100µM concentration 

stimulates SFK, TLR4 phosphorylation, IkBα degradation and thus nuclear translocation of NF-kB to up-regulate 

proinflammatory gene induction. 
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3. Tools for Study of H2S 

1. Knockout mice and transgenic cell lines 
a. PPTA knockout mice of BALB/c 

background (11) 
b. CSE knockout mice of C57BL/6J 

background (58) 
c. CSE knockout mice of C57BL/6J 

background (19)  
d. CSE overexpressed HEK-293 cells 

(47) 

2. CSE inhibitors 
a. D,L-propargylglycine, Compound 

ID: 95575 (1) 

b. -cyano-L-alanine, Compound ID: 
439742 (1) 

3. CBS inhibitors 
a. Hydroxylamine, Compound ID: 787 

(1) 
b. Aminooxyacetate, Compound ID 

286 (1) 

4. CBS activator 
a. S-adenosyl-L-methionine(AdoMet), 

Compound ID: 34756 (25) 

5. H2S donor compounds 
a. NaHS (Compound ID: 28015) 
b. Na2S (Compound ID: 237873) 
c. SPRC (US Patent application – US 

2009/0036534 A1 
d. GYY4137 (30) 

6. PCR primers (24) 

a. Mouse Cystathionine- -lyase 
Forward 5’ – ATG GAT GAA GTG TAT 

GGA GG -3’ 

Reverse 5′ -ACG AAG CCG ACT ATT 

GAG GT- 3’ 

b. Mouse Cystathionine- -synthase  
Forward 5’ – ACT ACG ATG ACA CCG 

CCG AG – 3’ 

Reverse 5’ – AGT CCT TCC TGT GCG 

ATG AG – 3’ 

7. Antibodies 
a. Rabbit anti mouse CSE and CBS antibody 

for immunofluorescence staining in 
pancreatic tissue and western blotting of 
pancreatic islet cell protein extract (23). 

8. Method of measuring H2S 
To date, several methods of measuring 

sulfides in biological samples have been 

developed (50). Among the more commonly 

used methods are: 

a) Spectrophotometric method (Methylene 
Blue Assay) 

 A more high-throughput method 

 Sensitivity in the micromolar range 

b) Chromatography (Ion, Liquid and Gas) 

 More specific as sulfide is separated 
before measurement 

 Sensitivity depends on the method of 
sulfide binding and detection employed. 

c) Sulfide Specific Electrode 

 Currently the most specific and 
sensitive method 

 Allows for real-time measurement 

 Very slow turn-over rate 
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