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1. General: The role of InsP3R in 

pancreatic acinar and other cells 

The classical pathway linking stimulation by 

neurotransmitters and hormones to changes in 

phosphoinositide metabolism and the subsequent 

InsP3 induced Ca2+ release was in large part 

documented by work carried out in exocrine cells, 

in particular, acinar cells isolated from the 

exocrine pancreas (49). In seminal work using 

permeabilized rat pancreatic acini, Streb and 

colleagues demonstrated that the addition of 

InsP3 resulted in Ca2+ release from a non-

mitochondrial Ca2+ store (43). This store was later 

identified to be the endoplasmic reticulum (ER) 

through experiments where sub-cellular fractions 

from pancreatic cells were isolated and exposed 

to InsP3 (4, 42). Ca2+ release is rapid, occurring as 

quickly as 1s following secretagogue stimulation 

of acinar cells. Ca2+ release is also isomer 

specific, with other structurally related inositol 

phosphates shown to be far less efficacious in 

releasing Ca2+(43). The target protein for InsP3 

binding was later identified as the inositol 1,4,5-

trisphosphate receptor (InsP3R) (45). Strikingly, 

the secretion of digestive enzymes from 

pancreatic acinar cells has been shown to be 

entirely dependent on the activation of InsP3Rs 

and the resulting elevation in intracellular [Ca2+] 

(15). The receptor is encoded by 3 distinct genes 

in mammalian cells (ITPR1, ITPR2, ITPR3) that 

generate 3 monomeric isoforms (R1, R2, R3 

respectively) that share 60-70% sequence 

homology (36).  

Originally purified and cloned from rat cerebellum, 

the full length InsP3R forms a tetrameric cation 

selective channel in vivo (28). The three isoforms 

of InsP3R exhibit overlapping patterns of 

expression, with most cells and tissues 

expressing more than one isoform (50). Western 

blotting and quantitative PCR has revealed that 

there is relatively equal expression of the R2 and 

R3 isoforms in pancreas, with R1 only constituting 

~3% of the total InsP3R (50). The importance of 

R2 and R3 isoforms to pancreatic Ca2+ signaling 

is most evident in studies employing InsP3R 

knockout (KO) mice. Although single R2 or R3 KO 

mice were found to have no observable ill effects 

or phenotypic alterations, double R2/R3 KO mice 

typically gained less body weight post-natally 

compared to single KO or WT mice. Furthermore, 

double KO mice tended to lose weight rapidly post 

weaning and typically died 4 weeks after birth. 

These observations were attributed to the key role 
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the R2 and R3 isoforms play in the secretion of 

saliva and exocytosis of digestive enzymes from 

exocrine glands and the resulting inability of 

double KO mice to swallow or properly digest dry 

adult food. Indeed, double KO mice were rescued 

and reached body weights comparable to WT 

when a fed pre-digested wet mash diet or an 

elemental diet. Pancreatic acinar cells from R2/R3 

double KO mice were also found to accumulate 

zymogen granules that failed to secrete zymogen 

granules on stimulation with secretagogues. The 

study also highlights the inability of R1 to rescue 

double R2/R3 KO mice (15).  

 

Figure 1. Localization of InsP3Rs in pancreatic acinar cells. Immunofluorescence localizations in pancreatic 
lobules of InsP3Rs by confocal microscopy demonstrate the localization of InsP3R1, R2, R3 and amylase 
(A,B,C,D respectively) respectively. All 3 isoforms are predominantly localized to the apical pole of acinar cells 
directly abutting the plasma membrane (arrows in panels A-C). R1 and R3 also appeared to localize to 
perinuclear structures. (Scale bar = 10 μm). From (57).

The fidelity and specificity of the Ca2+ signal 

required for exocytosis is thought to be largely 

determined by the differential expression, 

localization and modulation exhibited by the 3 

InsP3R isoforms (14). For the most part, InsP3Rs 

are predominantly localized to the ER, although 

the golgi, nucleus, plasma membrane, 

peroxisomes and endolysosomal vesicles have 

also been reported to express small levels of 

InsP3Rs. Pancreatic acinar cells are highly 

polarized, both functionally and morphologically 

and InsP3Rs are predominantly expressed in ER 
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extensions in the apical regions juxtaposed to the 

acinar lumen (22, 24, 32, 57). Using fluorescence 

imaging techniques, studies have shown that 

stimulating InsP3 generation in these cells results 

in the initiation of Ca2+ signals in the apical 

regions, followed by the propogation of a Ca2+ 

wave that is facilitated by peripheral InsP3Rs. 

Stimulation of basal secretagogue receptors as 

well as uncaging InsP3 in various regions of the 

cell aso confirm that Ca2+ signals initiate in apical 

regions of the pancreatic acinar cell (3, 13, 21, 47, 

53). 

2. Structural features of the InsP3R 

Structurally, the InsP3R monomer is 

conventionally divided into 3 functional domains: 

an N-terminal ligand binding domain (LBD), a 

coupling/modulatory domain and a C-terminal 

transmembrane domain (TMD) that contains the 

channel (14) (Figure 2). InsP3 binding is mediated 

by the ‘core’ ligand binding domain, which 

constitutes amino acids (AA) 224-578 of the LBD. 

This region contains 10 conserved positively 

charged arginine and lysine residues (3 critical, 

R265, K508, R511) that are thought to 

allosterically coordinate the negatively charged 

PO4
3- groups of InsP3 in a binding pocket (55). 

The three isoforms have differing InsP3 binding 

affinities that are regulated by the first 223 AA of 

the LBD, termed the suppressor domain (SD). 

Specifically, competitive InsP3 binding assays 

using GST fusion constructs encoding AA 1-604 

demonstrate that R2 has an 11-fold greater 

affinity (Kd) for InsP3 compared to R3 (14nM vs. 

163nM), with R1 having an intermediate affinity 

(49.5nM) (19). Similar studies in pancreatic acini 

revealed a Kd of 6nM (17), comparable to that of 

R2, while permeabilized Ca2+ release assays in 

acinar cells demonstrated an EC50 for InsP3 of 

0.8µM (34) (Figure 3). 

 

 

Figure 2. Illustration of InsP3R-1 depicting location of suppressor domain, ligand binding core, regulation 
/ coupling domain and channel domain.  
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Figure 3. (A) Permeabilized cell Ca
2+ 

release assay in acinar cells. Isolated pancreatic acini were loaded with 
furaptra prior to permeabilization with β-escin. ER is loaded through SERCA upon application of Ca

2+ 
containing 

buffer containing MgCl2, and ATP, as indicated by the increase in fluorescence ratio. Removal of MgCl2 

deactivates SERCA and (B) addition of varying [InsP3] releases from stores as indicated by the decrease in 
fluorescence ratio. (C) Concentration response analysis for InsP3. EC50 for InP3 is 0.8µM. From (8).

Deletion of the suppressor domain (SD) results in 

the loss of distinct InsP3 affinities between the 

isoforms and a 10-100 fold increase in InsP3 

affinity (19). Despite an increased InsP3 binding 

affinity, deletion of the SD also results in the loss 

of channel activity, indicating that the SD is 

required for inducing InsP3R activation and Ca2+ 

release. Based on hydropathy plots, the TMD is 

similar in structure to that of RyRs and voltage 

gated K+, Na+ and Ca2+ channels and constitutes 

6 putative transmembrane regions (TM1-6) (12). 

The TMD is responsible for the ER targeting (33, 

35) and for the oligomerization of the InsP3R into 

tetramers, which occurs co-translationally (20). 

Lastly, TM5 and 6 forms the pore through which 

Ca2+ is conducted (37). The loop between TM5 

and 6 contains a selectivity filter (GVGD; similar to 

the super family of cation selective channels) that 

provides some degree of cation selectivity to the 

InsP3R (14). However, it is poorly Ca2+ selective 

and allows conduction of monovalent cations 

(Ca2+:K+ = 6:1). In fact, it is believed that  

“functional” Ca2+ selectivity of InsP3R is primarily 

determined by virtue of SERCA being a highly 

selective Ca2+ pump and Ca2+ being by the far the 

most abundant cation in the ER.  To “gate” and 

open the channel, evidence suggest that the SD 

interacts with the cytosolic loop between TM4-5, 

and that InsP3 binding results in a conformational 

change that moves TM5 away from TM6 and 

opens the channel (38). The CT tail (last 160 AA) 

and the large (1700 AA) but less conserved 

modulatory domain contains putative binding sites 

for the numerous modulators of InsP3R activity 

(56). These modulators, which include Ca2+, ATP 

and PKA, all contribute in distinct ways to the 

differential Ca2+ release profiles encoded by the 3 

isoforms.  

3. Modulation of the InsP3R 

Cytosolic Ca2+ is the most important regulator of 

InsP3Rs, modulating activity in a biphasic manner 

(11). Numerous putative Ca2+ binding sites have 

been identified, and Ca2+ has been shown to 

induce dramatic conformational changes in R1 (1, 

2, 18, 39, 40). For the most part, studies have 

shown that in the presence of InsP3, low to 

optimal [Ca2+] (300nM) stimulates channel activity 

while higher cytosolic [Ca2+] inhibits it (11). To 

explain this biphasic regulation, Foskett and 

collaborators have proposed a model in which 

InsP3R activity is regulated by two distinct Ca2+ 

binding sites: a stimulatory and an inhibitory site. 

Under resting conditions, the inhibitory site has a 

higher affinity for Ca2+ than the stimulatory site. 

Accordingly, this site is occupied at resting 
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conditions and inhibits InsP3R activity. The 

binding of InsP3 decreases the inhibitory sites’ 

affinity for Ca2+, thereby allowing Ca2+ to bind to 

the stimulatory site and positively regulating 

channel activity. The downstroke of the biphasic 

curve is the result of Ca2+ binding to the inhibitory 

sites due to cytosolic [Ca2+] being elevated 

beyond 300nM (46). In effect, they suggest that 

Ca2+ is only an essentially InsP3R co-agonist, with 

InsP3s sole role being simply to modulate Ca2+ 

sensitivities (25).  

Cytosolic ATP has also been shown to 

differentially modulate the activity of all 3 isoforms 

in an allosteric manner. This mode of regulation is 

thought to link the metabolic status of the cell to 

the Ca2+ release. Specifically, studies show that 

R2 is only modulated by ATP at sub-maximal 

[InsP3] while R1 and R3 activity is affected 

irrespective of [InsP3], implying that ATP is 

required for maximal activity of R1 and R3 (6, 7).  

Each isoform also differs in its affinity for ATP, 

with R2 having 3 fold and 10 fold higher affinities 

than R1 and R3, respectively (6). ATP binding 

was originally believed to occur at Walker A like 

motifs (G-X-G-X-X-G) that exist in each isoform. 

One such motif, called ATPB, is conserved across 

all 3 isoforms. Additionally, R1 contains 2 other 

sites: ATPA and ATPC, the latter only being found 

in the S2- variant which is expressed in peripheral 

tissues (48). Recently, mutagenesis studies have 

demonstrated that only the ATPB site in R2 is 

important in mediating the modulatory effects of 

ATP (34) and this regulation is important for 

defining the sensitivity of Ca2+ release in 

pancreatic acinar cells (17). In contrast, the ATPB 

sites in R1 and R3, in addition to the ATPA and 

ATPC sites in R1, play no role in modulating 

InsP3R activity through ATP.   

Lastly, protein kinase A (PKA) mediated 

phosphorylation has been shown to directly 

increase InsP3R Ca2+ flux and single channel 

activity of R1 and R2 albeit by phosphorylation at 

different residues. Specifically, studies show that 

PKA mediated phosphorylation at S1598 and 

S1755 on R1 and S937 on R2 significantly 

enhance Ca2+ release and single channel activity 

(5, 9, 56). Conversely, no effects on Ca2+ release 

through R3 have been observed after PKA 

stimulation, despite evidence that R3 is 

phosphorylated by PKA at 3 sites in vivo (41, 56). 

Thus far, no single channel studies have been 

performed on R3 to rule out any PKA mediated 

effects on channel activity.  

InsP3Rs are also regulated and bound by 

numerous other kinases and accessory proteins, 

including cGMP protein kinase (PKG), Akt kinase, 

FK506 binding protein, calmodulin, CaBP, IRBIT, 

Bcl-2/XL, cytochrome C, RACK and Erp44 (14).  

Lastly, due to the differences in modulation and 

Ca2+ signals generated by each isoform, it is 

entirely plausible that the formation of 

heterotetrameric InsP3Rs would add another layer 

to the diversity of generated Ca2+ signals. To date, 

co-immunoprecipitation (IP) studies that utilize 

isoform specific antibodies have primarily 

provided evidence for the formation of 

heterotetramers (31, 52). Such experiments have 

been performed on the AR42J rat pancreatoma 

cell line (52) and pancreatic acinar cells (51) and 

have shown that such cells are capable of forming 

heterotetramers.  

4. Tools available to study the 

InsP3R 

a. Antibodies 

A multitude of commercially available isoform 

specific antibodies can be utilized to probe for 

each isoform of the InsP3R. Additionally, there are 

antibodies that detect all 3 isoforms. 

 InsP3R1 Rabbit polyclonal (H-80) from Santa 

Cruz (sc-28614); epitope corresponding to AA 

1894-1973 in the cytosolic modulatory 

domain. 
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 InsP3R1, UC Davis/NIH NeuroMab Facility, 

clone L24/18; epitope against AA 2680-2749 

in C-terminus. 

 InsP3R3 Goat polyclonal (C-20) from Santa 

Cruz (sc-7277); epitope corresponding to C-

terminus. 

 InsP3R3 purified mouse monoclonal from BD 

Transduction Laboratories (Cat: 610313).  

 InsP3R1/2/3 Rabbit polyclonal (H-300) from 

Santa Cruz (sc-28613); epitope corresponding 

to AA 2402-2701 in C-terminus of InsP3R-2 

(human). 

b. cDNA 

Accession number:  

InsP3R1: rat, 55925609.  

InsP3R2: mouse, 60593031. 

InsP3R3: rat, 6981109. 

c. Cell Lines 

SHSY5Y Neuroblastoma: 99% InsP3R1 (50). 

AR42J Rat pancreatoma: 86% InsP3R2; 12% 

InsP3R1; 2% InsP3R3 (50). 

RINM5F Mouse insulinoma: 96% InsP3R3; 4% 

InsP3R1(50). 

DT40 triple knockout cell lines: Kurosaki and 

colleagues have generated a DT40 chicken B 

lymphocyte cell line with the endogenous InsP3Rs 

stably knocked out (44). These triple knockout 

cells can subsequently be stably transfected with 

constructs encoding individual mammalian InsP3R 

isoforms, allowing the study of activity and 

regulation of each isoform in isolation. These cell 

lines are available on request from our laboratory. 

d. Mouse Lines 

InsP3R-1 knockout mice (27). 

InsP3R-2 (23) and R-3 single and double 

knockout mice (15). 

e. Agonists/Antagonists 

Commercially available InsP3: D-myo-inositol 

1,4,5-trisphoshate hexapotassium salt; Enzo Life 

Sciences (cat: ALX-307-00). Adenophostin is a 

high affinity analogue available from SIGMA (cat: 

A5094). Various chemically caged forms of InsP3 

are available which have no activity until a 

masking group is liberated by UV light exposure; 

e.g NPE-InsP3 is available from Invitrogen (cat: I-

23580). A cell permeable version of caged InsP3 

is available from Sichem (cat: cag-iso-145). 

Cells are often stimulated with Gq coupled GPCR 

agonists to stimulate InsP3 production. Agonists 

include acetylcholine, trypsin and cholecystokinin.  

Antagonists 

Only poorly selective/specific antagonists are 

currently available, these include Heparin (54); 

Caffeine (10); 2-Aminoethoxydiphenyl borate (2-

APB) (26, 30); Xestospongin (16). 

f. Techniques used to study InsP3R function 

See reviews by Betzenhauser MJ., Wagner LE., 

Won JW and Yule DI (8) and Betzenhauser, 

Matthew J., Won, Jong Hak, Park, Hyungseo and 

Yule, David I. (2011). Measurement of 

Intracellular Calcium Concentration in Pancreatic 

Acini. The Pancreapedia: Exocrine Pancreas 

Knowledge Base, DOI:10.3998/panc.2011.34 
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